Electrochemical Conversion of Carbon Dioxide to Alcohols (FE0029868)

Feng Jiao

Center for Catalytic Science & Technology Department of Chemical and Biomolecular Engineering University of Delaware, Newark, DE (USA)

2017 NETL CO₂ Capture Technology Project Review Meeting August 23, 2017

Project Funding: \$1,000,000 (\$800,000 DOE share; \$200,00 UD Share)

```
Budget Period 1: 06/01/2017-11/30/2018
```

Budget Period 2: 12/01/2018-05/31/2020

	Budget Period	1 06/01/2017 -	Budget Period	2 12/01/2018 -	Total Project						
	11/30	/2018	05/31	/2020							
	Government	Cost Share	Government	Cost Share	Government	Cost Share					
	Share		Share		Share						
Applicant	\$421,099	\$105,275	\$378,901	\$94,725	\$800,000	\$200,000					
Total	\$421.099	\$105.275	\$378.901	\$94,725	\$800.000	\$200,000					
Cost Share	80%	20%	80%	20%	80%	20%					

Project was officially launched on June 1st, 2017.

Kick-off meeting was held on July 10th, 2017.

Project Objectives and Approach

- 1) Development of critical components for an electrochemical system that is able to convert CO_2 into C_2/C_3 alcohols
- 2) Demonstration of key functions of an integrated electrochemical system for CO₂ conversion using flue gas from coal-fired power plants
- 3) Full analysis of economics and life-cycle of the CO₂ electrolysis technology for CO₂ emissions mitigation from coal-fired power plants

Project Management

CO₂ Utilization via Electrolysis

Carbon monoxide:

- ✓ 2-electron process
 - low electricity consumption
- Gas at ambient conditions
 - easy to separate from liquid
- Important feedstock for existing chemical processes
- ✓ High selectivity (>90%, Ag) was achieved.

Other products:

- Formate/formic acid (80%, Sn)
- Ethanol (15-20%, Cu)
- Propanol (15%, Cu)
- 1) Hori, in Modern Aspects of Electrochemistry. (Springer, New York, 2008), vol. 42, pp. 89-189.
- 2) Jiao et al. Nano Energy, 2016.

Electrocatalysts: CO₂ to Ethanol

$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_5OH + 3H_2O \quad E^0 = 0.09V$

Javier Perez-Ramirez et al. Green Chemistry. 2015. pp 5114-5130

Liquid products (alcohols) are ideal:

CO₂ to Alcohols

Copper is the only metal that can catalyze CO_2 conversion to hydrocarbons in aqueous.

Proposed mechanism:

۲

Proposed Two-stage Process and its Chemistry

Subsystem: CO_2 electrolyzer Cathode reaction: $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$ Anode reaction: $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ Overall reaction: $2CO_2 \rightarrow 2CO + O_2$

Subsystem: CO electrolyzer Cathode reaction: $2CO + 8H^+ + 8e^- \rightarrow C_2H_6O + H_2O$ Anode reaction: $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ Overall reaction: $2CO + 3H_2O \rightarrow C_2H_6O + 2O_2$

Proposed Two-stage Process and its Chemistry

Anolyte

00

Catholyte -

Membr

Anode reaction: $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ Overall reaction: $2CO_2 \rightarrow 2CO + O_2$

Subsystem: CO electrolyzer Cathode reaction: $2CO + 8H^+ + 8e^- \rightarrow C_2H_6O + H_2O$ Anode reaction: $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$ Overall reaction: $2CO + 3H_2O \rightarrow C_2H_6O + 2O_2$

CO₂-to-CO electrolyzer prototype

- Nanoporous Ag SOA CO₂-to-CO catalyst
- 36 electrochemical cells arranged in 6 stacks
- 22A @ 3V

On-going Research: CO₂-to-CO Electrolyzer Development

Subtask 2.1: Conceptual Design of CO₂ Electrolyzer Subsystem

- Process control & optimization
- Subtask 2.2: Development of Nanostructured Ag Cathode
 - High current density (production rate) & low overpotential (energy penalty)
 - High selectivity towards CO
 - Robust & stable
- Subtask 2.3: Development of Non-Precious Metal-based Anode
 - High current density & low overpotential
 - Robust & stable

Subtask 2.4: Development of Gas/Liquid Contactor and Gas/Liquid Separator

- CO₂ delivery to catalyst (active site)
- Product separation

Subtask 2.5: Fabrication of CO₂ Electrolyzer Subsystem

- Scale up
- Integration

Subtask 2.6: Evaluation of CO₂ Electrolyzer Subsystem Performance

Subtask 2.7: Alternative CO₂ Electrolyzer Design for Performance Enhancement

• Boost performance using alternative designs

Proposed Two-stage Process and its Chemistry

Cu Catalyst for CO Reduction

Cu particles (\approx 1 $\mu m)$ were annealed at 500 °C for 6 hrs and deposited on carbon paper GDL (1 mg/cm²).

Batch test: 0.1 M KOH electrolyte

- Selective towards alcohols at moderate overpotentials
- Max. current density: 0.5 mA/cm² with n-PrOH selectivity of 10%
- Batch test: Low current density is due to the low solubility of CO in the aqueous electrolyte

Flow cell design for CO to alcohols

The low solubility of CO in aqueous electrolyte motivates a direct gas feed.

A gas diffusion layer allows CO to be fed directly to the catalyst/electrolyte interface.

On-going Research: Development of CO Electrolyzer

Subtask 3.1: Conceptual Design of CO Electrolyzer Subsystem

- Process control & optimization
- Subtask 3.2: Development of Nanostructured Cu Cathode
 - High current density (production rate)
 - High selectivity towards alcohols
 - Robust & stable

Subtask 3.3: Development of CO Electrolysis Flow Cell and Multi-cell Stack

• Electrode/electrolyte interface

Subtask 3.4: Fabrication and Evaluation of CO Electrolyzer Subsystem

- Scale up
- Integration

System Integration and Evaluation

Subsystem integration efforts:

- CO/CO₂ separation strategy
- Pressures and flow rates between subsystems
- Production rates of subsystems
- Process control & safety
- System compatibility with flue gases
- Techno-economical analysis and life cycle analysis

Project Schedule and Milestones

			Bu	dget	Perio	d 1		Budget Period 2							
				06/01/2017-11/30/2018				12/01/2018-05/31/2020							
	Start Date	End Date	Cost	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11 Q	12
Task 1.0 - Project Management and Planning	6/1/2017	5/31/2020	\$50,000												
Subtask 1.1 - Project Management and Planning	6/1/2017	5/31/2020													
Subtask 1.2 - Briefings and Reports	6/1/2017	5/31/2020													
Subtask 1.3 – Safety and Environmental Analysis		5/31/2020													
Milestones															
Milestone 1.a - Updated Project Management and Planning				Х											
Milestone 1.b - Complete Kick-off Meeting				Х											
Milestone 1.c - Complete Review Meetings						X			Х		X		Х		
Milestone 1.d - Complete Midterm Report										X					
Milestone 1.e - Complete Final Review Meeting														2	X
Milestone 1.f - Complete Final Report														2	X
Milestone 1.g - Complete Safety and Environmental Analysis						X			Х			X			
Task 2.0 - Development of CO ₂ Electrolyzer Subsystem		11/30/2018	\$250,000												
Subtask 2.1 - Conceptual Design of CO ₂ Electrolyzer Subsystem	6/1/2017	8/31/2017													
Subtask 2.2 - Development of Nanostructured Ag Cathode	6/1/2017	11/31/2017													
Subtask 2.3 - Development of Non-precious Metal-based Anode	6/1/2017	11/31/2017													
Subtask 2.4 - Development of Gas/Liquid Contactor and Gas/Liquid Separator		2/28/2018													
Subtask 2.5 - Fabrication of CO ₂ Electrolyzer Subsystem	3/1/2017	5/31/2018													
Subtask 2.6 - Evaluation of CO ₂ Electrolyzer Subsystem Performance	6/1/2018	8/31/2018													
Subtask 2.7 - Alternative CO ₂ Electrolyzer Design for Performance															
Enhancement	9/1/2018	11/30/2018													
Milestones															
Milestone 2.a - Complete the Conceptual Design of CO ₂ Electrolyzer				Х											
Milestone 2.b - Complete the Development of Electrocatalysts					X										
Milestone 2.c - Complete the Development of Contactor and Separator						X									
Milestone 2.d - Complete the Fabrication of CO2 Electrolyzer Subsystem							X								
Milestone 2.e - Complete the Evaluation of CO2 Electrolyzer Subsystem								Х							
Milestone 2.f - Complete the Evaluation of Alternative CO ₂ Electrolyzer									x						
Design									Δ						

Project Schedule and Milestones

Task 3.0 - Development of CO Electrolyzer Subsystem		11/30/2018	\$200,000									
Subtask 3.1 - Conceptual Design of CO Electrolyzer Subsystem		8/31/2017										
Subtask 3.2 - Development of Nanostructured Cu Cathode		2/28/2018										
Subtask 3.3 - Development of CO Electrolysis Flow Cell and Multi-cell Stack		5/31/2018										
Subtask 3.4 - Fabrication and Evaluation of CO Electrolyzer Subsystem	6/1/2018	11/30/2018										
Milestones												
Milestone 3.a - Complete the Conceptual Design of CO Electrolyzer				X								
Milestone 3.b - Complete the Fabrication of CO Electrolyzer Subsystem						Х						
Milestone 3.c - Complete the Evaluation of CO Electrolyzer Subsystem							Х					
Task 4.0 - Integration and Evaluation of the Complete Electrolyzer System		5/31/2020	\$400,000									
Subtask 4.1 - Conceptual Design of Integrated Electrolyzer System for C2/C3												
Alcohol Production	12/1/2018	2/28/2019										
Subtask 4.2 - Fabrication and Integration of CO ₂ Electrolyzer and CO												
Electrolyzer Subsystems	12/1/2018	8/31/2019										
Subtask 4.3 - Evaluation of the Performance of the Complete Electrolyzer												
System	9/1/2019	2/29/2020										
Subtask 4.4 - Optimize the Performance of the Complete Electrolyzer System	3/1/2020	5/31/2020										
Subtask 4.5 - Investigation of Flue Gas Compatibility		5/31/2020										
Milestones												
Milestone 4.a - Complete the Conceptual Design of the Integrated Electrolyzer								v				
System								^				
Milestone 4.b - Complete the Fabrication of the Integrated Electrolyzer System									Χ			
Milestone 4.c - Complete the Evaluation of the Integrated Electrolyzer System											Х	
Milestone 4.d - Complete the Optimization of the Integrated Electrolyzer												v
System												л
Milestone 4.e - Complete the Flue Gas Compatibility Investigations												Х
Task 5.0 - Economics and Life-cycle Analysis	6/1/2019	5/31/2020	\$100,000									
Subtask 5.1 - Refinement of the Cost Analysis Using the Experimental Data	6/1/2019	11/30/2019										
Subtask 5.2 - Re-evaluation of the Performance Metrics Using the												
Experimental Data	9/1/2019	2/29/2020										
Subtask 5.3 - Revisit the Life-cycle Analysis	3/1/2020	5/31/2020										
Milestones												
Milestone 5.a - Complete the Cost Analysis										Χ		
Milestone 5.b - Updated Performance Metrics											Х	
Milestone 5.c - Complete the Life-cycle Analysis												Х

Acknowledgements

Project manager:

Ted McMahon (NETL)

Thank you